OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Spring 2001 Final Exam

Name : _____

E-Mail Address:_____

choose four out of five problems: please indicate as below.

<u>1).</u> <u>2).</u> <u>3).</u> <u>4).</u>

<u>Problem 1</u>: Find the *observable* canonical form realization (in minimal order) from SISO continuous-time system given below:

$$\frac{d^4 y(t)}{dt^4} + 3t \frac{d^3 y(t)}{dt^3} + 4 \frac{d^2 y(t)}{dt^2} + 2 \frac{dy(t)}{dt} + \alpha(t)y(t) = \frac{d^2 u(t)}{dt^2} + e^{-t} \frac{du(t)}{dt} + u(t) .$$

Notice that gain blocks may be *time* dependent. Show the state space representation and its corresponding simulation diagram.

Problem 2:
There exists a similarity transformation matrix *P* such that
$$PAP^{-1} = A_c = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\alpha_0 & -\alpha_1 & -\alpha_2 & \cdots & -\alpha_{n-1} \end{bmatrix}.$$

Show that if λ is an eigenvalue of the companion matrix A_c , then a corresponding eigenvector is $\boldsymbol{\nu} = \begin{bmatrix} 1 & \boldsymbol{\lambda} & \cdots & \boldsymbol{\lambda}^{n-1} \end{bmatrix}^T.$

Problem 3: For the matrices

$$A_{1} = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ and } A_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

determine the functions of matrices $e^{A_1 t}$, A_2^{99} , $\cos A_2 t$.

Problem 4:

Show that the two linear systems

$$\dot{x}^{(1)}(t) = \begin{bmatrix} 0 & 1 \\ 2 - t^2 & 2t \end{bmatrix} x^{(1)}(t) = A_1(t)x^{(1)}(t)$$

and

$$\dot{x}^{(2)}(t) = \begin{bmatrix} t & 1 \\ 1 & t \end{bmatrix} x^{(2)}(t) = A_2(t) x^{(2)}(t)$$

are equivalent state-space representations of the differential equation

 $\ddot{y}(t) - 2t\dot{y}(t) - (2-t^2)y(t) = 0.$

- a) For which choice is it easier to compute the state transition matrix $\Phi(t,t_0)$? For this case, compute $\Phi(t,0)$.
- b) Determine the relation between $x^{(1)}(t)$ and y(t) and between $x^{(2)}(t)$ and y(t).

Problem 5:

Consider the equivalent dynamical equations

 $\dot{x} = Ax + Bu$ y = Cxand $\dot{\overline{x}} = \overline{A}\overline{x} + \overline{B}u$ $y = \overline{C}\overline{x}$ where $\overline{x} = Px$. Their adjoint equations are, respectively, $\dot{z} = -A^*z + C^*u$ $y = B^*z$ and $\dot{\overline{z}} = -\overline{A}^*\overline{z} + \overline{C}^*u$ (1)
(2)

 $y = \overline{B}^* \overline{z}$

where A^* and \overline{A}^* are the complex conjugate transposes of A and \overline{A} , respectively. Show that Equations (1) and (2) are equivalent and they are related by $\overline{z} = (P^{-1})^* z$.