OKLAHOMASTATEUNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Spring 2001
Final Exam

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad
choose four out of five problems: please indicate as below.
1).
2).
3).
4).

Problem 1:

Find the observable canonical form realization (in minimal order) from SISO continuous-time system given below:

$$
\frac{d^{4} y(t)}{d t^{4}}+3 t \frac{d^{3} y(t)}{d t^{3}}+4 \frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+\alpha(t) y(t)=\frac{d^{2} u(t)}{d t^{2}}+e^{-t} \frac{d u(t)}{d t}+u(t) .
$$

Notice that gain blocks may be time dependent. Show the state space representation and its corresponding simulation diagram.

Problem 2:

There exists a similarity transformation matrix P such that

$$
P A P^{-1}=A_{c}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & \cdots & -\alpha_{n-1}
\end{array}\right]
$$

Show that if λ is an eigenvalue of the companion matrix A_{c}, then a corresponding eigenvector is $v=\left[\begin{array}{llll}1 & \lambda & \cdots & \lambda^{n-1}\end{array}\right]^{T}$.

Problem 3:

For the matrices

$$
A_{1}=\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right], \text { and } A_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

determine the functions of matrices $e^{A_{l} t}, A_{2}^{99}, \cos A_{2} t$.

Problem 4:

Show that the two linear systems

$$
\dot{x}^{(1)}(t)=\left[\begin{array}{cc}
0 & 1 \\
2-t^{2} & 2 t
\end{array}\right] x^{(1)}(t)=A_{1}(t) x^{(1)}(t)
$$

and

$$
\dot{x}^{(2)}(t)=\left[\begin{array}{ll}
t & 1 \\
1 & t
\end{array}\right] x^{(2)}(t)=A_{2}(t) x^{(2)}(t)
$$

are equivalent state-space representations of the differential equation

$$
\ddot{y}(t)-2 t \dot{y}(t)-\left(2-t^{2}\right) y(t)=0 .
$$

a) For which choice is it easier to compute the state transition matrix $\Phi\left(t, t_{0}\right)$? For this case, compute $\Phi(t, 0)$.
b) Determine the relation between $x^{(1)}(t)$ and $y(t)$ and between $x^{(2)}(t)$ and $y(t)$.

Problem 5:

Consider the equivalent dynamical equations

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

and

$$
\begin{aligned}
& \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
& y=\bar{C} \bar{x}
\end{aligned}
$$

where $\bar{x}=P x$. Their adjoint equations are, respectively,

$$
\begin{align*}
& \dot{z}=-A^{*} z+C^{*} u \\
& y=B^{*} z \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{\bar{z}}=-\bar{A}^{*} \bar{z}+\bar{C}^{*} u \\
& y=\bar{B}^{*} \bar{z} \tag{2}
\end{align*}
$$

where A^{*} and \bar{A}^{*} are the complex conjugate transposes of A and \bar{A}, respectively. Show that Equations (1) and (2) are equivalent and they are related by $\bar{z}=\left(P^{-1}\right)^{*} z$.

